SUBJECT CODE NO:- P-273 FACULTY OF ENGINEERING AND TECHNOLOGY S.E. (All Branches) Examination MAY/JUNE-2016 **Engineering Mathematics -IV** (Revised)

[Time: Three Hours]

[Max Marks:80]

10

"Please check whether you have got the right question paper."

- 1) Question numbers 1 and 6 are compulsory.
 - 2) Solve any two questions, from remaining of each section.
 - 3) Figures to the right indicate full marks.
 - 4) Assume suitable data, if necessary.

Section A

Solve any five:-Q.1

- a) Verity the Cauchy's Riemann equations for the function $f(z) = e^{-\overline{z}}$
- b) Find the harmonic conjugate of u=2xy+3y.
- c) Evaluate $\int_0^{1+i} e^{|z|^2} Re(z) dz$ along the straight line z=0 to z=1+i
- d) Evaluate $\int (x + y)dx + ix^2y dy$ along $y = x^2$ from (0,0) to (3,9). e) Find the residue of $f(z) = \frac{1}{z^2 \cdot e^z}$ at each pole.
- f) Find the image of the line y=0 under the transformation w=log z.

g) Solve
$$\frac{\partial^2 u}{\partial y^2} = 0$$
, where $u(x, 0) = x^2$, $u(x, 1) = 1$

find the z-transform of

h) Solve
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial y}$$
, where u(x,0)=6 e^{-3x}

Find the z-transform of Ka^{κ} , $K \ge 0$.

a) If $f(z) = u + i\vartheta$ is analytic then find f(z), where $u + \vartheta = \frac{1}{\gamma} [(r^2 + 1)cos\theta + (r^2 - 1)sin\theta]$ 05 05

b) Evaluate $\oint_C \frac{(Z-3)}{(Z^2+2Z+5)} dZ$, where C is |Z+1-i| = 2 by using cauchy's integral formula. c) Solve $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, subject to the condition y(0,t)=y(l,t)=0 and $\left(\frac{\partial y}{\partial t}\right)_{t=0} = 0$, $y(x,0) = \sin \frac{\pi x}{t}$ 05 OR

OR

 $u(k) = 1, K \ge 0$ = 0, k < 0

<u>OR</u>

Find the Z-transform of $sin^2 \frac{K\pi}{4}$

Q.3 a) Find the harmonic conjugate of
$$u = e^x \cos y + x^3 - 3xy^2$$
, also find corresponding analytic function f(z). 05
b) Evaluate $c \int \overline{z^2} dz$, where C is $|z - 1| = 1$

c) Solve
$$\alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$
, where 0\frac{\partial u}{\partial x}(0,t) = 0, $\frac{\partial u}{\partial x}(5,t) = 0$ and $u(x,0) = x$
Find the inverse z-transform of $\frac{Z^2}{Z^2+4}$

N.B

Q.2

- a) Find the image of the triangular region bounded by the lines x=0, y=0 and x+y=1 under the transformation 05 w=2iz.
 - b) Evaluate $\oint_c \frac{(2Z+1)}{Z^2-Z-2} dz$, where C is $|Z| = \frac{3}{2}$ by using Cauchy residue theorem. 05

c) Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to the condition $\left(\frac{\partial u}{\partial x}\right)_{r=0} = 0$, $\left(\frac{\partial u}{\partial x}\right)_{r=0} = 0$, $\left(\frac{\partial u}{\partial x}\right)_{r=0} = 0$ and 05 $u(x,a) = u_0 \cos\left(\frac{\pi x}{a}\right).$

Solve – by z- transform $y_{n+2} - 5y_{n+1} + 6y_n = 5^n$, if $y_0 = 0, y_1 = 0$.

- a) Find the bilinear transformation which maps the points z=2,i,-2 on to the points w=1, i,-1. 05 b) Expand $f(z) = \frac{7Z-2}{(z+1)z(z-2)}$ for 1 < |z+1| < 3. 05 05
 - c) Evaluate $\int_0^{\pi} \frac{d\theta}{17-8 \cos\theta}$ by residue theorem.

Section B

Q.6

Q.5

- Solve any five a) Find the Laplace transform of $\frac{Sin\omega t}{t}$
- b) Find the Laplace transform of $e^{4t}t^{3/2}$
- c) Find the Laplace transform of $te^t f(t)$
- d) Find the inverse Laplace transform of $\frac{1}{s} \left(\frac{s-3}{s+3} \right)$
- e) Find the inverse Laplace transform of $\frac{1}{S^3+4s}$
- Find the inverse Laplace transform of $\frac{e}{s^2+2s+2}$. f)
- Find the Fourier sine transform of $\frac{1}{2}$ g)
- h) Find the Fourier transform of

$$f(x) = 0, if x \le a$$

= 1, if a < x < b
= 0, if x ≥ b

a) Evaluate $\int_0^\infty \frac{sinat sinbt}{t} dt$ b) Find inverse Laplace transform of $\frac{1}{s} cot^{-1}s$ Q.7 05 05 c) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, x>0, t>0, subject to the conditions 05 1) U=0. when x=0. t>0

- 2) U=1, 0<x<1 $= 0, x \ge 1$
- 3) U(x,y) is bounded.

a) Find the Laplace transform of $\int_0^t t \sinh 2t dt$ 05 05 b) Find the inverse Laplace transform of $\frac{1}{(S-2)(S+2)^2}$ by convolution theorem. 05 c) Find the Fourier cosine transform of e^{-ax} sinax.

P-2016

Q.8

Q.4

10

- a) Find the Laplace transform of periodic function $f(t) = e^{at}$ for $0 < t < 2\pi$. Q.9 05
 - b) Solve $\frac{d^2y}{dt^2} 4\frac{dy}{dt} + 3y = 6t 8$, y(0) = 0, y'(0) = 0 by Laplace transform method. c) Solve the integral equation $\int_0^\infty f(x) \sin \lambda x \, dx = \frac{\sin \lambda}{\lambda}$ 05 05
- a) Express the following function in terms of Heaviside unit step function and hence find their Laplace Q.10 05 transform

$$f(t) = sin2t, 2\pi < t < 4\pi$$

= 0, t > 4\pi
= cos2t, x(0) = 1, y(0) = 0, by Laplace transform method. 05
05

b) Solve $\frac{dy}{dt} + 2x = sin2t$, $\frac{dx}{dt} - 2y$ c) Find the Fourier transform of

$$f(x) = a^{2} - x^{2}, if |x| < a$$

= 0, if |x| > a

P-2016